If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-14X-180=0
a = 1; b = -14; c = -180;
Δ = b2-4ac
Δ = -142-4·1·(-180)
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{229}}{2*1}=\frac{14-2\sqrt{229}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{229}}{2*1}=\frac{14+2\sqrt{229}}{2} $
| 9x+2=4x-2 | | 28-(3c+4)=2(c+6 | | 6a^2+8a-1=0 | | (7x+4)/(-3)=5x+2 | | 42+14a=-15a+1 | | x/4-6=-16 | | -1/2-3/7w=-2/5 | | 12=2(u-2)-6u | | 8x+1=-76 | | 6c-9=4c+3 | | 10x+34-17x=15+12x | | .85x=68 | | 0.75x-0.5x=18+30/4 | | 8x-21=6x+7 | | 14y-10-5=36.08 | | 5(3w+10)/4=0 | | 2x-6x-9=-4x+2-9 | | 14=11+(w/8)6 | | 3x-31=2x-11 | | X=1/a^2 | | 6(2.5)+5x=80 | | 2r+8/6=5r-30/5 | | 1/2m=7/4 | | 18x-24=10 | | 5x+3÷2=8 | | 7/8x-2+1-4=3/16x+1/4 | | -181=-10=9x | | 8p+10=75 | | -56=-4(n=8) | | 3(x-8)=-12 | | 10+6x=1920 | | T=4s+17.14 |